Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

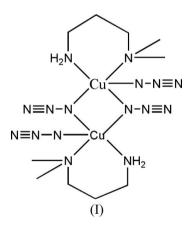
Wen-Xuan Cai,^{a,b} Hong Su^b and Yun-Long Feng^b*

^aDepartment of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang 325035, People's Republic of China, and ^bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.004 Å R factor = 0.025 wR factor = 0.066 Data-to-parameter ratio = 19.3

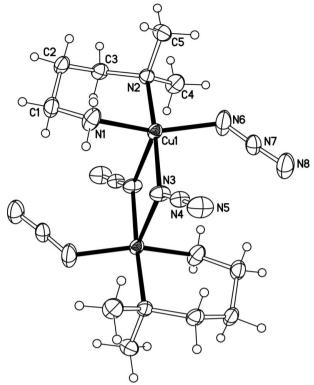

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(μ -azido- $\kappa^2 N$:N)bis[azido(N,N-dimethyl-1,3-propylenediamine- $\kappa^2 N$,N)copper(II)]

The title complex, $[Cu_2(N_3)_4(C_5H_{14}N_2)_2]$, is a centrosymmetric dimer in which each Cu atom is coordinated by five N atoms from three azide anions and one *N*,*N*-dimethyl-1,3-propyl-enediamine molecule in a distorted square-pyramidal geometry; the Cu···Cu distance is 3.416 (1) Å.

Comment

Research into transition metal azide complexes has expanded rapidly because of their fascinating structural diversity (Ribas *et al.*, 1993; Mukherjee, Dalai, Zangrando *et al.*, 2001; Ribas *et al.*, 1996; Escuer *et al.*, 1994; Mondal *et al.*, 2001). The azide ligand is an efficient superexchange pathway for propagating magnetic interaction between paramagnetic centres such as Cu^{II} , giving dinuclear or tetranuclear one-, two- or threedimensional complexes (Lin *et al.*, 2005; Mukherjee *et al.*, 2002; Mukherjee, Dalai, Mostafa *et al.*, 2001). It can bridge two metal centres in two different fashions, end-on (μ -1,1) or endto-end (μ -1,3). In this paper, we report the synthesis and X-ray crystal structure of a dinuclear Cu^{II} complex with endon azide bridging ligands.


The structure of complex (I) is shown in Fig. 1. It is a centrosymmetric dimer, with two terminal azide anions in *trans* positions. The Cu···Cu distance is 3.416 (1) Å. In the dimer, each Cu atom is five-coordinate in a distorted square-pyramidal environment. The basal coordination positions are occupied by four N atoms, two from *N*,*N*-dimethyl-1,3-propylenediamine, one from a terminal azide anion and one from a μ -1,1-bridging azide anion. The apical coordination position is occupied by an N atom from the other centrosymmetrically related μ -1,1-bridging azide anion. From a least-squares plane calculation, the four coordinated atoms, N1, N2, N3 and N6, in the basal positions deviate from the plane by -0.315, 0.309, 0.320 and -0.314 Å, respectively. The

Acta Cryst. (2007). E**63**, m501–m503

All rights reserved

© 2007 International Union of Crystallography

Received 18 December 2006 Accepted 9 January 2007

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius.

Cu–N bonds of the basal plane, in the range 1.967 (2)–2.071 (2) Å, are similar, except for the Cu1–N3ⁱ bond of 2.351 (2) Å [symmetry code: (i) -x + 2, -y, -z + 1]. In general, these Cu–N distances are comparable with those in other five-coordinate Cu^{II} complexes (Zukerman-Schpector *et al.*, 1991; Luo *et al.*, 2004). The azide anions around the Cu atom are nearly linear, with angles of N5–N4–N3 = 177.4 (2)° and N8–N7–N6 = 176.5 (2)°.

Experimental

An aqueous solution (10 ml) of 3-dimethylamino-1-propylamine (0.10 g, 1.0 mmol) was added to a stirred solution of $Cu(OAc)_2 \cdot H_2O$ (0.20 g, 1.0 mmol) in water (10 ml). A deep-blue precipitate quickly formed and this was dissolved in methanol (20 ml). To this solution, sodium azide (0.13 g, 2 mmol) in a minimum amount of water was added. After stirring for about 30 min, the deep-green solution was filtered, and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature for a few weeks, black crystals of (I) suitable for X-ray diffraction were collected.

Crystal data

$[Cu_2(N_3)_4(C_5H_{14}N_2)_2]$	Z = 2
$M_r = 499.56$	$D_x = 1.589 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
$a = 9.445 (2) \text{ Å}_{2}$	$\mu = 2.07 \text{ mm}^{-1}$
b = 11.164 (2) Å	T = 273 (2) K
c = 12.0678 (18) Å	Block, black
$\beta = 124.877 \ (11)^{\circ}$	0.21 \times 0.16 \times 0.11 mm
V = 1043.9 (4) Å ³	

Data collection

Bruker APEXII area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.682, T_{max} = 0.798$

Refinement

مارام

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0381P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.025 & + 0.0173P] \\ wR(F^2) = 0.066 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.02 & (\Delta/\sigma)_{max} = 0.001 \\ 2489 \ reflections & \Delta\rho_{max} = 0.29 \ e \ {\rm \AA}^{-3} \\ 129 \ parameters & \Delta\rho_{min} = -0.25 \ e \ {\rm \AA}^{-3} \\ \ H\ -atom \ parameters \ constrained & \end{array}$

6943 measured reflections

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 28.0^{\circ}$

2489 independent reflections

2002 reflections with $I > 2\sigma(I)$

rable r				
Selected	geometric	parameters	(Å,	°).

Cu1-N6	1.9671 (18)	Cu1-N2	2.0711 (15)
Cu1-N1	2.0102 (17)	Cu1-N3 ⁱ	2.3512 (16)
Cu1-N3	2.0334 (16)		
N6-Cu1-N1	149.96 (9)	N3-Cu1-N2	173.48 (6)
N6-Cu1-N3	93.41 (8)	N6-Cu1-N3 ⁱ	109.90 (9)
N1-Cu1-N3	87.63 (7)	N1-Cu1-N3 ⁱ	99.69 (7)
N6-Cu1-N2	89.62 (7)	N3-Cu1-N3 ⁱ	77.89 (7)
N1-Cu1-N2	92.62 (7)	N2-Cu1-N3 ⁱ	95.65 (6)

Symmetry code: (i) -x - 1, -y - 1, -z.

H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, or C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. Methyl groups were allowed to rotate to fit the electron density. H atoms bonded to N atoms were located in a difference Fourier map and were refined with N-H distance restraints of 0.91 (2) Å and with $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

References

- Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Escuer, A., Vicente, R., Ribas, J., El Fallah, M. S., Solans, X. & Font-Bardia, M. (1994). *Inorg. Chem.* 33, 1842–1847.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lin, H., Feng, Y. L. & Gao, S. (2005). Chin. J. Struct. Chem. 24, 375–378.
- Luo, J., Zhou, X. G., Gao, S., Weng, L. H., Shao, Z. H., Zhang, C. M., Li, Y. R., Zhang, J. & Cai, R. F. (2004). *Polyhedron*, 23, 1243–1248.
- Mondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. & Malik, K. M. (2001). Polyhedron, 20, 135–141.
- Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203–1207.
- Mukherjee, P. S., Dalai, S., Zangrando, E., Lloret, F. & Chaudhuri, N. R. (2001). Chem. Commun. pp. 1444–1445.
- Mukherjee, P. S., Maji, T. K., Escuer, A., Vicente, R., Ribas, J., Rosair, G., Mautner, F. A. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 943–949.

- Ribas, J., Monfort, M., Costa, R. & Solans, X. (1993). *Inorg. Chem.* **32**, 695–699. Ribas, J., Monfort, M., Ghosh, B. K., Cortes, R., Solans, X. & Font-Bardia, M. (1996). *Inorg. Chem.* **35**, 864–868. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zukerman-Schpector, J., Castellano, E. E., De Simone, C. A., Oliva, G. & Mauro, A. E. (1991). Acta Cryst. C47, 957-959.